

NOTICE

Spartan Software of Minnesota Ine. reserves the right to make
improvements in the product described in this manual at any
time and without notice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

Spartan Software of Minnesota Ine. makes no warranties,
either expressed or implied, with respect to this manual or
with respect to the software described in this manual, its
quality, performance, merchantability, or fitness for any
particular purpose. Spartan Software of MN Inc. software is
sold or licensed "as is". The entire risk to its quality and
performance is with the buyer. Should the programs prove
defective following their purchase, the buyer (and not
retailers) assumes the entire cost of all necessary servicing,
repair, or correction and any incidental or consequential
damages resulting from any defect in the software, even if
Spartan Software of MN. Inc has been advised of the
possibility of such damages. Spartan Software of MN Inc.
assumes no liability for any direct or indirect consequences of
the use, misuse, or installation of the product described in this
manual. The entire risk resulting from the use, misuse, or
installation of the product described shall rest upon the buyer.

This manual is copyrighted. All rights are reserved. This
document may not, in whole or part, be copied, photocopied,
reproduced, translated or reduced to any electronic medium or
machine readable form without prior consent, in writing from
Spartan Software of MN Ine.

© 1983 by Spartan Software of MN Inc.
3417 Noble Avenue North
Crystal, MN 55422
(612) 448-7042 - Uil =72 bl

~ |

Atari®, Atari® 810 Disk Drive and Atari®
800/1200 XL are registered trademarks of
Atari® Ine. and all reference herein should be
therefore noted as such.

TABLE OF CONTENTS

Chapter 1 INTRODUCTION Page 1-1
1.1 The Purpose 12
1.2 User Rights 1-2
1.3 Warranty 1-2
Chapter 2 GETTING STARTED Page 2-1
2.1 Using the ARCHIVER 2-1
2.1.1 Boot Procedure 21
2.1.2 Normal Backup Procedure 2=7
2.2 Some Conventions Used 2-3
Chapter 3 SCREEN CONVENTIONS Page 3-1
2 | On The Surface 3-1
3.2 The Option Line : 3~2
321 Source Drive 3-2
Sudicl Destination Drive 3~2
3.2.3 Track Range 3-3
3.2.4 Verify 3-3
3.2.5 Logic Seeking Read/Write 3-4
3.2.6 Compaction 3-5
3.2.7 Format Read Type 3-6
3.2.8 Format Flag 3-7
3.2.9 Screen Code Conversion 3-8
3.2.10 Bad Sector (CRC) 3-8
3.3 The Status Line 3-8
3.4 The Command Line 3-10
3.5 Opening/Closing The Chip 3-11
3.6 Sector Display Format 3-12
Chapter 4 THE ARCHIVER Page 4-1
4.1 An Overview 4-1
4.2 Number of Copies 4-2
4.3 Automatic Copy 4-3
4.4 Enter Editor 4-3

Chapter

Chapter

TABLE OF CONTENTS (Continued)

5 THE EDITOR

5.1 An Overview

el Reading Tracks

5.3 Writing Tracks

5.4 Enter EDIT Mode

3.5 Disassembly

5.6 Movement Between Sectors

Dol Clear Track From Buffer

5.8 Clear Sector From Buffer

5.9 Transferring Sectors

5.10 Creating Bad Sectors

5.11 Custom Formatter

912 Address Changing

5.13 Inserting Custom Format

5.14 Moving Tracks

515 Track Mapper

5.16 Enter The ARCHIVER

6 DISK FORMATTING THEORY

6.1 An Overview

6.2 Diskette Structure

6.3 The Basies of a Sector

6.4 Track Layout/Format

6.5 The Read Command

6.6 The Write Command

6.7 The CHIP'S Logic Seeking
Read/Write Commands

6.8 Read Format Commands

6.9 SIO Speed Restrictions

6.10 Double Sectors

6.11 Bad Sectors

6.11.1 CRC Error Sectors

6.11.2 Data Type Flags

6.12 Status

ii

Page 5-1

Page

5=2
9-2
9-3
9-3
=5
9-5
0-6
9-6
-7
=7
9-9
5-12
9-12
9-12
5-13
o-14

mmmclucnc)cnm
(S 2) IS S OURE G I e

DD
| Id}l
O 3 (=]

6-10
6-10
6-12

Chapter

Chapter

Chapter 9

APPENDIX

A

H O Q W

TABLE OF CONTENTS (Continued)

SPECIAL CHIP FEATURES
The Boot Sector
Motor Off Delay
Locking Format/Write/Open
Machine Language Interface
Tracing

USEFUL HINTS
Cyclic Formats
20 or More Sectors
Garbage Tracks
Getting Rid of Loud Sectors

IF ALL ELSE FAILS

Hexadecimal Number Conversions
ARCHIVER Command Summary
EDITOR Command Summary

Changing Drive Motor Shutdown Delay

Error Messages

iii

Page 9-1

Page

A-1

B-1

D-1

E-1

CHAPTER 1
INTRODUCTION

The CHIP 810 Disk Drive modification along with the
ARCHIVER/EDITOR program greatly expand the operating
capabilities of the Atari® 810 Disk Drive. Special CHIP
commands allow the ARCHIVER/EDITOR program to get at a
wealth of information that never before has been possible.
Sophisticated CHIP read/write/format/mapping commands
added to the 810 Disk Drive allow the ARCHIVER/EDITOR
program to duplicate any diskette, or create custom formats
never before achieved by any software company. In addition,
the ARCHIVER/EDITOR program allows the user easy access
to the powerful capabilities designed into the CHIP.

The CHIP is a permanant replacement for the ROM currently
in your 810 Disk Drive. The installation is straight forward
and not very difficult, however, it does require three circuit
board trace cuts and three jumpers. Therefore, if you have
had little or no experience with a soldering iron, we
STRONGLY urge that you either have a service center install

it (dealer?) or get help from someone with the required
experience.

Along with this manual, you will find a card containing a four
digit number. This is the code that 'opens' your particular
CHIP, and allows access to ALL nonstandard functions
provided by the CHIP. The purpose of this code is to prevent
unauthorized access (i.e. application programs) into the CHIP.
Some programs do check for 'illegal' commands and will not
work if the command succeeded. Thus, as a safety feature to
the user, the CHIP modification funetions identically to a
standard (unmodified) 810 Disk Drive when not opened. As a
convenience, the code need NOT be used when using the
ARCHIVER/EDITOR if the drive is properly booted (see

section 2.1). The open code should be memorized and kept in a
safe place.

o |

i.1 PURPOSE

It is NOT our intention to promote software piracy, in fact, we
are strongly against this, and disregarding copyrights is
STRICTLY AGAINST FEDERAL COPYRIGHT LAWS! Pirating
tends to raise prices and discourage software companies, so
PLEASE respect the software companies rights.

The reason for the production and sale of this product to the
end user is for his/her own protection. With the price of
software steadily increasing the backing up of original
software is necessary because diskettes do fail whether due to
physical damage, constant use, or magnetic fields nearby (i.e.
your TV or monitor). Therefore, with the proper use of this
product, you can be spared the grief of having your $50
program suddenly crash.

1.2 USER RIGHTS

The copying and distribution of the ARCHIVER/EDITOR
program or the CHIP is forbidden under Federal copyright
laws., However, we do strongly suggest that you backup the
ARCHIVER/EDITOR program for yourself and store the
original away in a safe place.

1.3 WARRANTY

If upon purchase the buyer finds that the CHIP or
ARCHIVER/EDITOR prove defective, Spartan Software of MN
Inc. will exchange it at no charge. If, at any time after 30
days from date of purchase, the CHIP or ARCHIVER/EDITOR
program become defective, Spartan Software of MN Ine. will
EXCHANGE it for a charge of $10 plus shipping.

There are no other warranties either expressed or implied.

CHAPTER 2
GETTING STARTED

If the CHIP is not yet installed, please go to the CHIP
Installation Manual and follow the step-by-step procedure.
Now, the first thing you should do is to make a backup of the
ARCHIVER/EDITOR program to protect you from accidentally
damaging your original diskette.

In this chapter you will find a step-by-step procedure instruet-
ing you on how to boot up the ARCHIVER/EDITOR and how to
make a backup of it (or any other program). Also found in this

chapter are a few conventions used in this manual as well as in
the ARCHIVER/EDITOR program itself.

2.1 USING THE ARCHIVER

The following bootup procedure is only for using the ARCH-
IVER/EDITOR program. This procedure differs from the
normal suggested booting procedures, so please make note of
any differences. Now follow the brief instructions on how to
use the ARCHIVER/EDITOR to make a backup of the ARCH-
IVER/EDITOR program itself.

2.1.1 Boot Procedure

1. Take all cartridges out of the computer.
2. Turn off all computer equipment.

3. Insert the ARCHIVER/EDITOR program diskette into
the 810 Disk Drive.

4, NOW, turn on the Disk Drive. This is done to allow
the CHIP to "boot" in sector $2D0 which contains a
small program that will "open" your 810 Disk Drive's
CHIP so that it will accept all the new disk com-
mands that give the disk drive its extended capabil-
ities.

5. Turn on the computer and TV (or monitor). If you
plan on using the printer when using the EDITOR, you
may turn the printer and interface on at anytime.

6. When the title page appears, take the ARCHIVER/
EDITOR diskette out and put it away (except when
you are making a backup copy of the ARCHIVER/
EDITOR, then leave it in and proceed to the steps
below).

Note:This boot procedure should only be done with a copy of
the ARCHIVER/EDITOR from now on. DO NOT BOOT
ANY OTHER DISK IN THIS MANNER.

2.1.2 Normal Backup Procedure

1. Follow the boot procedure given above (with a copy
of the ARCHIVER/EDITOR only).

2. When the ARCHIVER page is displayed (screen
changes to a brownish-yellow) then press C (for
Copy).

3. The ARCHIVER will respond by asking you to insert
-~ source diskette. Now insert the program you wish to
backup and then press the START button.

4. After a short time, you will be requested to insert
destination diskette. At this time, you should insert
the diskette you wish to put the copy on. When you
have done this, press the START button.

2-2

NOTE

The destination diskette does not have to be
previously formatted. The ARCHIVER/
EDITOR program formats each track as it is
written if the F+ parameter is selected.

5. If the ARCHIVER asks you to insert the source
diskette again and repeat steps 3 and 4.

6. Depending on the length of the program, from 1 to 3
passes may be required on a 48K computer. The
larger the computer memory is, the fewer the
number of passes required. The ARCHIVER will
indicate on the sereen when the copy is done.

7. We suggest that you put the original diskette away in

a safe place and use the backup copy from this time
on.

If you got a Read Format Error, most likely you did not follow
steps 3 and 4 of the boot procedure carefully. Otherwise the
command option parameters may require some changes to

enable you to custom modify the diskette copying technique
(refer to sections 4.1 and 4.3).

2.2 SOME CONVENTIONS USED

1. All numbers used in the ARCHIVER/EDITOR program
are in Hexadecimal (HEX) which is a base 16 number-
ing system. If you do not understand hexadecimal
numbering, then refer to the table in Appendix A. In

this manual all HEX numbers are preceded by a $
symbol.

2.

In the ARCHIVER/EDITOR program pressing the
ESC key will bring you back to the command mode
of the program you are currently in. The only ex-
ception is during actual disk I/O, (R/W) in which case
holding down the OPTION button will stop the disk
I/O at the end of the track read/write operation
which then allows you to abort the operation by
pressing the ESC key or to press START to
continue the I/O operation..

Whenever disk I/O needs to be performed or contin-
ued you must press the START button to proceed.

At anytime during the use of the EDITOR program
(except during disk I/0) a CRTL-P will create
printout of what is currently on the screen on your
printer.

The CTRL and SHIFT keys need never be used
except for printing as described in 4. (However you
may press CTRL or SHIFT if you like, but these
key functions are disregarded and unnecessary.)

Whenever any writing is to be performed the border
color will change to red. Whenever any reading is to
be performed the border color will change to white.

CHAPTER 3
SCREEN CONVENTIONS

This chapter deals with the various command lines and
prompts used by the ARCHIVER/EDITOR program. You
should read the following chapters to become aware of all the
many capabilities provided by this program.

3.1 ON THE SURFACE

Figure 3-1 shows the screen for the ARCHIVER. However, the
EDITOR, the FORMATTER, MAPPER, and the DISAS-
SEMBLER screens all have similar Option, Status, and Com-
mand lines. The Option and the Status lines provide 16 unique
parameters for disk sector/track format changing. The
following paragraphs explain how to use each parameter.

2]

STATUS LINE

COMMAND LINE______ | = 33) pEABIRNE <<<

Figure 3-1. Screen Program Lines

3-1

3.2 THE OPTION LINE

The option line contains parameters used by the ARCHIVER
(and EDITOR). All of these parameters can be changed at any
time when you are in the command mode. To modify these
parameters type P . You will see a cursor on the option line.
To move the cursor right and left press the <« or =+ key
(without pressing the CTRL key). Pressing RETURN
selects that parameter to be changed. After the parameter
has been changed the cursor will be on the option line ready to
select another parameter to change. Pressing the ESC key
returns control back to the command level. A description of
each parameter follows.

3.2.1 Source Drive

S:x This is the drive number from which all reading is
done. Pressing a RETURN when on this
parameter will increment the drive number and
wrap around at four (4) to one (1). NOTE: This
drive must be opened prior to reading from it,
otherwise an error will occur (this drive must also
have a CHIP installed).

3.2.2 Destination Drive

D:x This is the drive number to which all writing is
done. Selecting the drive is accomplished the
same way as described in section 3.2.1 above.

3.2.3 Track Range

Raxx,yy This is the range of tracks that will be copied
using the ARCHIVER (or tracks
read/written/formatted... @~ when using the
EDITOR). The xx is the start track and the

yy is the end track. When pressing RETURN
with the cursor positioned on this parameter a
prompt will appear on the command line
requesting a new range of tracks. There are three
allowable syntaxes:

RETURN : same as typing 00,27 (tracks 00 to

27 HEX).
X,y : set start to x and end track toy.
X ¢ set both start and end tracks to x.

ESC will exit this option without modifying the
range of tracks. RETURN enters the range you
entered and updates the option line accordingly.

If you make an illegal entry a track range error
occeurs.

3.2.4 Verify

v+ This is the write with verify flag. Pressing a
RETURN simply toggles this parameter:
o+ Verify on.
= 3 Verify off.

If the verify is on, a verification will be done on
the track after it is written. NOTE: Because the
verify pass is separate from the write pass, it is
faster than the standard DOS write with verify.

3.2.5 Logic Seeking Read/Write

1+

This is the read/write logic seeking flag. Hitting
a RETURN simply toggles this parameter:

* 3 Logic seeking on.
i g Logic seeking off.

When reading or writing multiple sectors with the
same number (i.e. two sector $09) you must be
able to read or write the correct sector, there-
fore, there are logic seeking read/write com-
mands in the CHIP that automatically synchronize
to the format on the track and read/write the
correct sector. Since synchronizing to a track
takes a little more than one revolution, these
commands are slower than the standard read/
write commands. The only time you would want
to change this to a - is when the format cannot
be synchronized (see section 8.1). If the logic
seeking is off, it is suggested that you turn
compaction off (refer to section 3.2.6). Note:
The ARCHIVER/EDITOR programs only use the
logic seeking commands (if enabled) when a non-
unique numbered sector is to be read or written.

3.2.6 Compaction

C+ This is the compaection flag. Simply pressing
RETURN toggles this parameter:

+ 13 Compaction on.
- Compaction off.

If you have compaction on when using the ARCH-
IVER, the sector will neither be read nor written
by the ARCHIVER/EDITOR if it is filled by a
single value (i.e. $00 ete.). If you are in the L-
mode you should have compaction off. Sectors
filled with the values $01-$08 will not be
compacted as these are format control bytes.
These "fill' bytes are placed in the sector
automatically when the track is formatted.

The C +/- parameter has the same function in the EDITOR
as it does in the ARCHIVER, however, in the EDITOR the
results are more readily apparent. Compaction only works on
sectors which are not bad and that have single byte filling the
entire sector. Also, sectors filled with the values of $01-$08
will not be compacted. If the sector was compacted, the
EDITOR will NOT display the data in the sector. The EDITOR
will only display sectors it actually read. The CHIP actually
reads the data and reports back to the EDITOR that the sector
is to be compacted, thus saving time on reading a diskette.

3.2.7 Format Read Type

A6+

This is the type of track reading that the ARCH-
IVER/EDITOR program will use to determine the
format on the tracks. Either 4 or 6 bytes of
information about the sector can be selected (A4
or A6). The + or - is the toggle to turn on
(+) or off (-) the format verification logic.
Normally the A6+ will be desired. To change this
parameter, simply press RETURN with the
control cursor positioned on the A6 . The
meaning of each of the codes is as follows:

6 : Six bytes are returned to the ARCH-

IVER/EDITOR for each sector, thus
the ARCHIVER/EDITOR will be able
to rotate the sequence so that the
end-of-track gaps will be identical
(A6+ only). This is mainly
cosmetic, but does have significance
on fast formats.
Because 6 bytes are returned, a max-
imum of 21 sectors per track can be
fetched. If there are more than 21
sectors, then a 4 mode should be
used.

4 Four bytes are returned to the
ARCHIVER/EDITOR for each sector,
thus some information about each
sector is missing. This is intended
for 22 to 24 sector formats.

+ The track is cycled through twice
comparing the first sector sequence
to what the CHIP finds the second
time. This is an internal function of
the CHIP.

This mode is slightly faster ti.an the
+ mode, however, no verify is done on
reading the format. This is generally
used for speed and alsc if the track is
badly garbled. (Unformatted tracks
can return strange sector headers on
some diskettes.)

For more information on the difference on the 6/4
byte read distinction, see section 5.15.

3.2.8 Format Flag

F+ ‘ This is the format before write flag. Normally
you will want a F+ mode. Simply pressing
RETURN will toggle this flag when the cursor

is positioned on the F+ .

4+

Format track before doing the write
pass.

Do not format. This option is select-
ed if you already have an identical
format on the track or if you are
simply trying to put sectors on the
destination track. If there are mul-
tiple sectors with the same number
and the track formats are not identi-
cal the logiec seeking read/write
commands will not work correctly.
Also, the verify may not work cor-
rectly if it tries to verify the wrong
sector. This flag also allows you to
convert slow formats by first
formatting the destination track with
a fast format and then write out the
sectors that were read from a slow
formatted diskette.

3.2.9 Screen Code Conversion

S+

This is used in the EDITOR cnly. It refers to the
conversion of characters displayed on the normal
EDITOR page to the right of the sector display.
A RETURN toggles this parameter.

+ Convert data to ATASCII
characters.
- No conversion. Display data as Atari

scereen codes.

3.2.10 Bad Sector (CRC)

B+

This flag refers to the method of writing CRC bad
sectors. Pressing RETURN toggles flag on (+)
or off (). This flag should always be set to +
when in the ARCHIVER.

% - Write a full bad CRC sector.

- B Only write a partial sector (CRC
bad). The number of bytes written
depends on the last byte of the sector
data. That byte refers to the number
of bytes that will be written. This
allows for the capability of increas-
ing the number of sectors on a track
to above 20 (i.e. two half sectors
take about the same amount of room
as a full sector).

3.3 THE STATUS LINE

The status line is the third line on the screen. It will display
the current track, sector, composite sector number, the
amount of free buffer memory, current copy number and the
number of copies to make (in the ARCHIVER or the sector
data address in the EDITOR). The only directly adjustable
parameters are the CO:xx which refers to the number of
copies to make and the LOC:xxxx which is the sector start
address. The status line parameters are as follows:

TR:xXxX This is the current track number the
ARCHIVER/EDITOR is processing. (Tracks
range from $00-$27.)

SE:xx This is the current sector number the
ARCHIVER/EDITOR is processing. (Sectors
range from $01-$12, a -- means that the
sector number is invalid.)

FM:xxx This is the composite sector number used by
Atari DOS. These numbers are arrived at by
the formula FM = TR*$12+SE. Where TR is
the track number and SE is the sector
number. The FM ranges from $001 to $2D0.
A — indicates that the sector number is
invalid.

#xxxx This is the current free memory for storage
of the sector data and track information.
When data is being read into the buffers, the
memory counter will decrement $80 for
each sector read and also for each track
read. NOTE: If compaction is on,
compacted sectors do not take up memory
space, however, there is a $80 byte over-
head to store sector layouts and various
other information for each track. On a 48K

machine this field will read $9900 (about
38K).

NU:xx This is the number of the copy being made.
A $00 indicates it is on a read pass. A $01
to $FF is the number of the current copy
being written.

CO:xx This is the number of copies to be made per
each read pass. This is defaulted to one
($01) whenever the ARCHIVER program
mode is entered. This value can range from
$01 to $FF.

LOC:xxxx This parameter is used with the EDITOR and
is the address location in which all
disassembly or displays of sector data will
start. This is for purely comestic reasons
and does not affect the data (refer to
section 5.12).

3.4 THE COMMAND LINE

The command line is at the bottom of the display. This line
will contain all necessary screen prompts, input commands and
error messages. When using one key command entries no

RETURN is necessary to enable that command. Simply
press the desired key for the desired command input.
However, on numeric input pressing RETURN is necessary
to enter the numeric information.

Also, pressing the space bar will erase an error message or

copy done/aborted message immediately. Otherwise the
message will disappear after approximately 4 seconds.

3-10

3.5 OPENING/CLOSING THE CHIP

Normally the CHIP will already be open if the Disk Drive is
booted correctly (refer to section 2.1). However, there may
be some cases in which you will need to open a drive.
(Opening a second drive for example or if the drive was not
booted correctly.) To open the CHIP, type an O when in the
command mode (in either the ARCHIVER or EDITOR). You
will be prompted to enter the open code and drive number.
Enter your code, and the drive number (optional—the default is
one). If you enter a wrong code or just press RETURN , the
CHIP will close. Pressing ESC aborts this option.

3-11

3.6 SECTOR DISPLAY FORMAT

The ARCHIVER/EDITOR's sector layout displayed on the
sereen is somewhat unique. Field (a) (shown in figure 3.2) is
the track number (HEX) from where the sector sequence
came. The numbers in field (b) represent the actual sector
numbers on the track and are in the sequence as found on that
track. The numbers are read vertically (i.e. figure 3.2 shows
track = $01, sectors = $12, $01,...). Generally there will be
$12 sectors (18 decimal) on a track. However, this can vary
from one software protection scheme to another. Field (¢)
represents the status of the sector. If there is a symbol under
the sector number, the sector is considered 'bad' and will
return a bad sector status if read (a protection technique).
Refer to table 5.1 in section 5.10 and to section 6.11 for each
symbol's meaning. The sector numbers can be in any order and
need not be unique. Two (or more) reads of the same sector
number need not return the same data.

¥E¥ THE ARCHIVER V1.8 ®un
"S71 D:l R:@3,87 Ut L+ C+ G6F Ft 55 BF
rezs? SE:18 Fn.saE HEI58 cnhaz Hu:81 -

e CECELE
5 5 HE

Figure 3.2 Track/Sector Display Format
For detailed information on the source of these sector num-

bers, refer to the section on the track layout (section 6.3) and
the following paragraph.

3-12

These track and sector numbers are not used internaliy by the
Atari computer. Instead, the operating system refers to each
sector as a number from $001-$2D0 (1-720 decimal). The
computer's disk operating system (or DOS) will access the Disk '
Drive using this composite sector number. Then, within the
Disk Drive, the composite sector number is broken down into a
track and sector number using the relationship:

composite = (track) * ($12) + (sector)

Thus, the first sector in figure 3.2 ($12) would be called $24
(36 in decimal) within the computer. Notice in the figure that
there are two sectors with the number $09. If the Atari
computer were to read sector $2B (composite remember), it

would get one of the two possible sectors. This is called a
'double sector'.

3-13

CHAPTER 4
THE ARCHIVER

The ARCHIVER is an automatic copier designed to copy your
protected (or unprotected) software for backup purposes. The
ARCHIVER is easy to use and will backup virtually all
protected software.

4,1 AN OVERVIEW

In general, diskettes can be copied by simply typing a C .
For some special disk formats it may be desirable to change
several of the ARCHIVER operating parameters. The
ARCHIVER will allow the making of multiple copies per each
read pass. On a 48K system a disk will take up to 3 passes to
copy. However, most diskettes can be copied in one or two
passes depending on the amount of data on the diskette.

As a safety feature the ARCHIVER/EDITOR requires that you
press the START button before any disk reading or writing
will take place. If you wish to abort the reading or writing
during disk I/O press the OPTION button and hold it down
until the track is completely read or written. To continue
press the START button and to exit the operation press the

ESC key. The ESC key will always return control to the
previous command mode while disk I/O is non-active.

4.9 NUMBER OF COPIES

This command will allow you to select the number of copies
that will be made on each read pass. To enter the number of
copies you wish to make, type an N . You will be prompted
to enter the number of copies to make. Type the number (in
HEX) followed by a RETURN . The number selected will be
reflected after the CO . When making copies on a single
drive, screen prompts will signal when to insert the source
diskette and when to insert the destination diskette. On a two
drive system (both with a CHIP), the first copy will be made
automatically and subsequent copies will be prompted. The
number after the NU indicates which copy is currently
being processed. A $00 means you are on the read pass.

4.3 AUTOMATIC COPY

The command to start making copies is initiated by pressing
the C key. When activated, screen prompts will be
displayed for inserting the source (original) and destination
(backup copy) diskettes throughout the process. Remember to
press START to acknowledge to the prompt that you are
ready. The copy command C makes the number of copies
specified by the CO:xx field and does its functions according
to the parameters on the option line (if applicable). The
memory buffer containing the previously read data will be
cleared prior to each read pass.

If you have problems copying, check the following:

1.

2.

Change to a different destination diskette.

A6+ to A6-.

A6, L, and C to -.

If the diskette has 20 or more sectors on a track, then
read each sector/track using the Editor and write it onto

the destination diskette. Refer to sections 6.11 and 8.2.

Be sure you have a data separator board and that the
disk drive is running at the right speed.

4.4 ENTER EDITOR

To enter the EDITOR type E . All data currently in the
memory buffers will transfer.

CHAPTER 5
THE EDITOR

The EDITOR will allow you to actually edit the sector data
and do many manipulations with it. Custom formatting can
also be done, thus enabling you to make protection schemes or
modify protection schemes as desired. Because formats can
now have over 19 sectors, the EDITOR is necessary in order to
duplicate these sophisticated formats. (Formats greater than
19 sectors have never been used to protect diskettes designed

for use on the Atari computers before the introduction of the
CHIP.)

 EDITOR Vi.0 W&
U+ L+ C* a6+ F+ S5+ B
g 86 0006608006618

DA DA Do THFFFFFE:
pa Da P 7ZZZZ T
pa Y z7z7ZZ 7
DA , ZFZZZZZZZ
pa Z7ZZZZZZZ}
DA Br777Zz7Z7
pa D 7 7ZZZZZ T
pa DA 777777
8b
8D
8D
8D
8D
8D
8D

comMmanND ==> B

&
5
S

Rl G R Rt

Wenl WY (01

Figure 5.1. EDITOR Sereen

5.1 AN OVERVIEW

The EDITOR is designed to be easy to use yet it doesn't lack in
sophistication. One key commands allow you to browse through
the many parts of the EDITOR. Unlike the ARCHIVER, only
one track's sector list will be displayed at a time. The
EDITOR allows you to move between sectors by simply
pressing the left and right arrow keys (+ and -+). You will
notice the dual purpose of the track format lines as both a
sector selection aid and as a sector layout display. This will
be discussed in more detail later. The normal EDITOR display
will be of the actual sector data of the sector that the cursor
is on (on the sector layout lines). If there is no track in
memory, the sector layout lines will be blank.

The main sector data display will contain data only if there is

at least one track in the memory buffer and the sector that
the cursor is on contains data.

5.2 READING TRACKS

To read in a range of tracks first be sure that the R:xx,yy
parameter is correct, then type an R followed by pressing
the START button to start the read process. As a safety
feature, if a track is currently in memory that was specified in
a read operation, the reading of that particular track will not
occur. That track will be skipped and the read process will
continue with the next track.

5.3 WRITING TRACKS

To write a range of tracks first set the track range (as in the
read). Press W along with START to initiate the writing
process. Only the tracks and sectors actually in memory
within the range selected will be written. If formatting is to
oceur before the write, the fill bytes will be written during the
format on compacted sectors. If a sector was deleted that
sector will not be written. If formatting is on then zeros will
fill that sector.

5.4 ENTER EDIT MODE

Prior to entering the Edit Mode, the sector data must first be
displayed. If so, press E to enter the Edit Mode.
Otherwise, read in the track you want to edit, then press E .
The cursor appears within the sector data and you may start
editing the code. The commands available for use while in the
Edit Mode are as follows:

+« : Move cursor one byte toward the beginning
of the buffer (left).

+ : Move cursor one byte toward the end of
the buffer (right).

4 : Move cursor eight bytes toward the begin-
ning of the buffer (one line up).

¥ : Move cursor eight bytes toward the end of
the buffer (down one line).

9-3

RETURN : Move the cursor to the beginning of the
next data line.

DELETE : Delete the byte the cursor is on. All data
beyond the cursor moves up one byte and a
zero is placed in the last byte of the
sector.

INSERT : Insert a byte at the cursor position. All
data moves down one byte from the data
that the cursor was on. The last byte of
the buffer is lost.

CLEAR : Fill the entire buffer with the character
currently under the cursor.

H : Move the cursor to the first byte in the
buffer.

xx : Typing HEX numbers changes the data to
exactly what you see. The cursor will
automatically move to the next byte when
a byte has been entered. All spaces are
automatically skipped between each byte.

ESC : Exit the edit mode. All changes will be
saved to a memory buffer (not the disk)
and are permanent unless changed later.
This will also update the characters on the
right to their new value. (This is not done
automatically during the Edit Mode.)

The address at the left is arbitrary and is used strictly for

reference. The address can be changed by the L command
(see section 5.12).

5.5 DISASSEMBLY

The EDITOR has a built in disassembler. First enter the Edit
mode and then move the edit cursor to the byte at which you
wish to begin the disassembly. Exit the Edit mode (press

ESC) and then press D to begin the disassembly. The
disassembled listing will instantly be displayed on the screen.
To seroll up or down the listing press the up (4) or down (+)
arrows. The disassembly will not seroll above the byte that
the edit cursor was on and the disassembly will not proceed
beyond the end of the sector. Scrolling will oceur in
increments of eight lines. To exit the disassembler, press the

ESC key. Pressing CTRL-P will qump the screen to a
printer if desired.

5.6 MOVEMENT BETWEEN SECTORS

When in the command mode the cursor movement keys allow
you to move from one sector to the next. The right (+) and
left («) arrow keys will move the sector cursor right and
left. This allows you to display any sector in that track. The
up (4) and down (¥+) keys moves the Edit display screen
between tracks. If the track is in memory that track will be
displayed, otherwise, that track will be skipped and the next
track present will be displayed. If the cursor happens to rest
upon a sector which is not in memory the sector data window
will be blank. Sectors which have an x under them cannot
be viewed. This is because these sectors are inaccessable to a
normal 810 Disk Drive. As you move from sector to sector,

the track, sector, and composite numbers are automatically
updated.

5.7 CLEAR TRACK FROM BUFFER

The CLEAR key will delete an entire track from memory.
The next track will then be displayed. The memory indicator
will automatically be incremented reflecting the deletion. If
you wish to delete all tracks from memory, simply holding
down the CLEAR key will do the job. Pressing RESET
also clears tracks from memory, but it sets all parameters to
their default values.

5.8 CLEAR SECTOR FROM BUFFER

The DELETE key will delete the sector currently displayed.
If no sector is being displayed, a beep will sound to indicate
that there is nothing to delete. If a write ocecurs, that sector's
data will not be written, however, the sector header will be
put on the diskette (if formatting is on). Deleting a sector
simply erases the data and does not modify the track layout.

5.9 TRANSFERRING SECTORS

Typing an H will copy the sector heing displayed into a hold
nuffer. Pressing the INSERT key will copy the buffer to the
sector the cursor is currently on. If a sector is being displayed
the new data will simply replace the old. If the sector was
originally empty the new data will simply be inserted. NOTE:
A1l disk 1/0 uses the same buffer so the data held will be lost.

5.10 CREATING BAD SECTORS

When a sector is being displayed you can cause that sector to
be bad by pressing the B . When you do this, only a flag is
changed so you must write the entire track in order for the
sectors to be written as bad. If there is no data in the sector
the sector will not be written. Thus that sector will not be
bad on the track. ONLY SECTORS ACTUALLY WRITTEN
WILL BE BAD (if they were selected to be bad). There are
seven types of bad sectors possible using this method (see
table 5.1). There are three flags that can flag a bad sector.
Any combination of these three flags can be set by pressing

B . The symbol under the sector number will cyele through
all combinations of bad sectors plus one of good sector. The
reason for having several types of bad sectors is that the three
flags mentioned above can each be read and examined on an
unmodified 810 Disk Drive.

SYMBOL | BIT6 | BIT5 | BIT3
BIT 3 : CRC
I CLR SET CLR error bit.
=4 SET CLR | CLR BIT 5 : Data
type flag #1.
T SET SET CLR
BIT 6 : Data
| CLR CLR SET type flag #2.
= CLR SET SET
- SET CLR | SET
+ SET SET SET
(blank) CLR CLR CLR

Table 5.1. Types of Bad Sector Symbols

When you press the B key the symbols eyele through in the
order as shown above. Only the last entry is a good sector.

NOTE

These bit numbers refer to the status byte
returned when executing a STATUS COM-
MAND (not the I/O status returned after the
read).

5.11 CUSTOM FORMATTER

The Custom Formatter allows you to create your own sector
layouts and format a range of tracks using your own layout.
You can create any sequence of sector numbers you desire.
The only restriction is that only sectors with numbers between
1 and 18 can be read.

To enter the Formatter type F . The Formatter has its own
screen layout which allows you to set the formatting
parameters (except for the range) in which you would like to
format. Thus, before entering the formatter, you should
select the range of tracks to format from the EDITOR.

e1fo2]e3l0alos[06[07]0s]03]01]02]e3]

LN|8D|80]|40|86]|80)80|80)|80|80|806|80|860
FL|0D|00|00|00]|11|00]00)|00]00]|00|00|060

selesafos|ecloziesloolm | | | | |

LN|B8o|8o|s0|80]|80]|80

FL{oo|eo|00|00 00|00
|POST INDEX.... 0B |POST DATA CRC.. 09
|PRE ID FIELD.. @6 |POST ID CRC.... 11 | B

Figure 5-2. Formatter Track Layout

5-9

The SE row contains the sector numbers which will be
placed in the headers of the track (refer to figure 5-2). The

LN row contains the number of bytes that will be in the
sector data and the FL row contains the data fill byte that
will go into that particular sector. NOTE: Fill bytesof 1 to8
must not be used as these bytes have special signficance to the
disk drive FDC ecircuit during formatting. Sector $03, for
example, will only contain $40 bytes (64 decimal) and if read
will return a bad status. Sector $05 will contain the normal
number of bytes, $80 (128 decimal) but will be filled with all
$1A. There are two tables of twelve sectors each in the
formatter screen layout page. They should be considered
sequential (there wasn't enough room to fit 24 sectors on one
row!) The table below the sector tables contains the gap
length bytes.

Because a track is only so long only a limited number of bytes
can be placed on a track. After the # is the current number
of bytes the formatter has calculated your format will use on
the track. This number must remain between $BCO and $CBO
for your format to be reliable.

All editing changes in the formatter will remain intact until
you reboot the ARCHIVER/EDITOR diskette. No defaults are
stored back in this table. Therefore, you can go back and
forth between the edit page and the format page without loss
of the new format.

The commands used in the Formatter are:

L

DELETE

INSERT

CLEAR

Xy

ESC

Move cursor left one sector (or gap size
value).

Move cursor right one sector (or gap size
value).

Move cursor up one parameter field (i.e.
FL - LN -SE - gap values-FL. . .).

Move cursor down one parameter field.
Delete sector cursor is on or if the cursor
is past the last sector, delete the last

sector.

Insert a sector before the sector that the
cursor is on.

Clear entire format (start from scratch).

Hex entry overwrites what is currently
dislayed.

Exit; go back to the Edit screen.

Format the range of tracks (R:x,y) using
the format created.

5-11

5.12 Address Changing

The address at which the sector begins may be changed by
pressing the L Kkey. Answer the prompt by entering the new
address in hexadecimal. This address is used only as a
reference and does not physically relocate the buffer contents.

5.13 INSERTING CUSTOM FORMAT

Pressing the I key allows the insertion of custom formats
from the Formatter page into a range of tracks (Rxx,yy).
The old tracks (if any) will be replaced. No sector data will

transfer. To insert data in the new sectors, you must use the
H and INSERT keys.

5.14 MOVING TRACKS

Tracks ecan be moved (but not duplicated) by pressing the N
key. The track currently displayed will be renumbered to a
new track number that you enter. The track currently at the
destination spot will be deleted and the track you are on will
be deleted from its current place and be moved to the new
location.

9-12

ARSI o

5.15 TRACK MAPPER

Pressing an M is used for entering the Mapper page. This
function will allow you to examine the format of individual
tracks. The most significant function of this command is to
allow you to determine the gap size between successive
sectors.

The SE is the sector number that originates from the sector
header. (Refer to figure 5-3.) The TR is the track number
as found in the sector header, and the LN is the sector
length byte. For more information on these values, refer to
section 6.3. The TI is the amount of time between that
sector and the succeeding sector in units of 2048 (decimal)
microseconds. There are about 100 (decimal) units of time on
a track, so the sum of these numbers should be about 100.

BEENNNS00¢ THE EDITOR U1.9 %
—T D71 R:03,07 U+ L+ C+ A6+ F+ 5% B+ =
105 SE:12 FM:048 +

Toa[e7]04]07]04]07]05]07]

85]85]65]65]65]6865]85}85185185185]85
90}|00|00]|00]00|00]00|00|680B]060}86
86}085]65]061065]861051051066}85186 | :
90|00]|00]|00]|00]00(0000}00)68]808 |

= ___—————————==

o7]eslozleafsz] | [| | | |

TR | es5|es ,
» - eo0|ee

' 85|06 |85S -

sT|ee|00|00|e0|00 |00 ,

" ENTER TRACK NUMBER = B

Figure 5-3. Track Map Layout

5-13

The ST is the status of the sector header read. Anything
other than a zero means that the sector can not ever be
accessed. Also, any A4 read format mode will not return
the TI and ST values. This is because the A4 mode
goes for quantity as far as sectors go, while the A6 modes
for quality of information per sector.

NOTE
The last sector's TI (time) value will only

be correct on an A6+ read format mode.

5.16 ENTER THE ARCHIVER

To enter the ARCHIVER from the EDITOR you must type an
A . CAUTION: all data currently in the data buffers will be
lost as soon as the ARCHIVER command C is used. How-

ever, the data will not be lost if you immediately return to the
EDITOR.

5-14

CHAPTER 6
DISK FORMATTING THEORY

By far the most powerful feature of the CHIP over the Atari

C ROM is its ability to create custom formats and
successfully write (and read) sectors of these formats. By no
means do we expect you to fully understand the peculiarities
of disk formatting and general I/O with one reading.
Remember, it took a couple of years for software houses to
devise even the simplist of protection schemes, so don't expect
to learn it all in an hour. However, we feel that to use the
ARCHIVER/EDITOR to its fullest, at least some basies should
be understood. In this chapter, the very basies will be
presented, and gradually the specifies of the track layout and
protection schemes will be dealt with.

6.1 AN OVERVIEW

The Atari 810 Disk Drive is an intelligent drive which means it
is just another computer, capable of reading and writing
diskettes and relaying the information to and from the main
computer. The CHIP is just a program much like the Atari OS
that adds a wide variety of functions to the 810 Disk Drive. A
description of the commands understood by the old ROM C
and the operation of the SIO is given in the Atari OS manual so
it will not be repeated here. For the remainder of this
chapter, only the workings of the disk drive and the CHIP will
be considered, so it is assumed that you know the theory of
communiecation between the computer and the disk drive.

6.2 DISKETTE STRUCTURE

A diskette is composed of a thin magnetic disk covered by an
outer rigid black cover. The outer cover (or jacket) has an
oval open area on both sides exposing the disk surface to the
drive read/write head. As the diskette spins about its central
hub while inside the drive, the read/write head hovers over the
jacket oval opening and reads the disk surface much like a
cassette recorder would.

The diskette is electromagnetically divided into 40 tracks. A
track is a ring about the center of the diskette. The disk
drive's head can be positioned precisely over any one of the 40
tracks, thus data can be sequentially read in as the disk
surface spins underneath the head as in a cassette recorder.

The track data magnetic fields are converted into electric
pulses which are fed to the FDC (floppy disk controller). The
FDC is the interface between the read/write head and the
drive's microprocessor. The FDC is responsible for
interpretting and processing commands from the
microprocessor. The FDC performs all sector searches and is
an intermediary on all sector data transfers between the
microprocessor and the physical disk surface.

Because each track contains too much data that must be
handled for each revolution of the diskette a subdivision of the
track is necessary. Thus, the track is normally divided into 18
sequential sectors of $80 (128) bytes of data each. Besides
being easier to deal with, error checking and reliability are not
much of a problem. As you may be aware, all the protection
schemes deal with the sector in one form or another, so the
rest of this chapter will deal explicitly with the sector.

6.3 THE BASICS OF A SECTOR

A sector has two parts to it; the header and the data. Because
the track is circular, there is no way to distinguish the
beginning of a track from the middle, thus, a sector needs to
be able to identify itself to the controller. This is the purpose
of the sector header. These sector headers are written during
formatting, so the sector can be identified upon subsequent
reading and writing to and from the sector.

Figure 6-1 shows the typical 810 sector/track layout format

and - the following paragraphs describe the various contents
that make up the sectors.

|<«——— COMPLETE SECTOR ——

GAP| pc | GAP |GAP D GAP| DATA |GAP |GAP D GAP | DATA | GAP 3213-1
1 2 3 FIELD 1 4 FIELD 1 5 3 FIELD 2| 4 FIELD 5 FIELD
| — N —
INDEX AM
N LN 7\
GAP| ID | TRACK SIDE SECTOR | SECTOR |CRC | CRC | GAP | DATA DATA | CRC |CRC |GAP
3 | AM |NUMBER |NUMBER|NUMBER [NUMBER| 1 2 4 AM FIELD 1 2 5

TRACK NUMBERS l
($00 - $27)

(NOT USED
ON 810) '

SECTOR NUMBER_|
($01-$12)

2BYTE CRC
WRITTEN
ON FORMAT

L_BM __ [SECTOR LENGTH
FORMATS [

00 = 128
01 =256
02=512
03 = 1024

Figure 6-1. Sector/Track Format

6-3

2BYTE CRC
WRITTEN
AFTER
WRITE
SECTOR

6.4 TRACK LAYOUT/FORMAT

Disk formatting is accomplished by the write track command.
Each byte for the entire track must be provided for proper
formatting including the gaps as well.

The FDC requests each byte in turn and places it directly onto
the surface of the diskette. However, there are exceptions to
the rule. If data bytes $F5 through $FE are fed to the FDC, it
recognizes these as special control bytes and take appropriate
action. The byte sequence is illustrated in figure 6-1.

Gap size restrictions:

GAP 1

GAP 2

GAP 3

GAP 4

GAP 5

This is always 255 ($FF) bytes and may be over-
written by the last sector on the track. This is
to ensure that no garbage remains between the
last sector and the first.

(Post Index AM gap) This gap should be at least
one (1) byte.

(Pre ID AM gap) This gap should be at least one
byte.

(Post ID CRC gap) This gap must be $11 (17)
bytes in length. (See Read/Write sections.)

(Post DATA CRC gap) This gap should be at
least one, however, in practice, it should be
over 9 bytes long. This is to protect the next
sector header from being overwritten.

6.5 THE READ COMMAND

When the processor issues the read command to the FDC, a
search for the sector header begins. The FDC reads the
headers of the sectors it finds and compares the sector number
and the track number to those given by the processor. If the
test fails, the search continues. Next, the CRC is checked for
validity; if not correct, the search continues. If all is correct,
the FDC begins searching for the data AM. If found within 28
bytes, the sector is read byte by byte and is transferred to the
processor. Finally, the CRC is checked for validity at the end.
The CRC status error bit is set accordingly. Also, the type of
data AM byte will determine the status' of bits 5 and 6 of the
status register. If the sector is never found ie. ID fields don't
match, bit 4 of the status is set, and the processor (CHIP) will
reposition the head in hope that somehow the head had gotten
over the wrong track (grind!!), and try again.

6.6 THE WRITE COMMAND

This works identically to the read command except that once
the sector has been located, a write occurs. NOTE: The write
requires that $11 (17) gap bytes be between the sector header
and the data. Also, the data AM byte's value depends upon the
last two bits of the write command byte. On three of the four
possibilities, the processor will interpret the sector as 'bad'
(see section 6.11).

6.7 THE CHIP'S LOGIC SEEKING READ/WRITE COMMANDS

These are the read and write commands that are used for
double sectors. The CHIP will first compare the sector
sequence it contains to what it finds on the diskette. When it
syncronizes itself to the sequence, the write or read function
described in section 6.5 and 6.6 will take place. The CHIP is
able to get the sector headers through a read address

command (of the FDC) which returns the six bytes contained
in the sector header (track,...,CRC bytes).

6.8 READ FORMAT COMMANDS

Using the method described above, the sector sequence can be
fetched. On the A+ modes, the headers are continuously
read for slightly more than one revolution. After this, the
sector numbers are compared on the next revolution and the
first sequence is cropped to agree with what it finds the
second time through. The A- modes read for about one
revolution but no double check is made.

6.9 SIO SPEED RESTRICTIONS

The disk drive's processor (and therefore the FDC) receives a
full sector of data every 1/18 of a disk revolution. This is
about .0115 second, however, the serial transfer between the
computer and the disk drive is considerably slower, (about .09
second). Now, since the diskette is turning at 288 RPM (or 4.8
rpms), if you do a little math, you will find that only two
sectors can be read in one disk revolution., This is the concept
behind fast formats.

Above is the standard format used in the CHIP as well as the
Atari ROM C. Notice that consequetive numbered sectors are
nine apart within the sequence and ten apart when crossing the
end of track gap (which is about half a sector in length). If

you are thinking ahead you may realize that even this format
can be improved upon.

6-6

il

In the above format, the sequential sectors are nine apart
except for the end of track gap, in which case they are eight
apart. Here, that gap is large enough such that the eighth can
just be read before the head passes it by (or rather it passes
the head by). This format is the fastest format possible on the
810 disk.

6.10 DOUBLE SECTORS

Now suppose that two sectors had the same number. If you
just randomly went and read that numbered sector, you could
get two different sets of data. This process can be precisely
controlled by first reading the sector nine (9) places before the
one you really wish to read, and then read the one you want.

(5) B o)

= O
op R}

0000 0
57638 8

(o Jem)

000
213

000
243

N =

0
9

3 O

abedefghijkl mnopagr

The above sector sequence contains 18 unique sectors but 8
numbers are duplicated. (This is actually a format used in the
protection of one software house.) Now suppose you read
sectors in the following order:

The actual physical sectors would be as follows:
ki b, L, 4 o, L

You will notice that the two reads of sector 9 did not yield the
same result, thus this becomes a valid protection scheme.
This is a rather new protection method (mid 1982), yet it is
simple to understand and to duplicate (with the CHIP). This
type of protection ecan ONLY be created with a drive
modification (which is exactly how they are ecreated in the
first place).

This idea can easily be expanded upon to include triple or
quadrouple sectors. HOWEVER, the ability to consistantly and
reliably get the same results gets harder with the more
duplicate numbered sectors you have. Another application is
to create more than 18 sectors and number two with the same
number. Previously, this was difficult to grasp and realize the
feasibility of such a scheme, however, now with the EDITOR,
you may create as many as 24 sectors on a track, but because
there is only so much room, many sectors must be cut short
(and thus be bad sectors). A word of warning: the data in
short sectors is not always reliable and timing between sectors
is not the same. Timing becomes critical in importance and
slight variations in speed may have adverse effects on
protections.

6.11 BAD SECTORS

The ability to write bad sectors has been around for quite a
while now. It was the first type of true protection, but is now
becoming not so important. It is possible to create two types
of bad sectors with a standard 810 Disk Drive. The first is a
CRC error and the second is a missing sector. The CRC error
bad sectors were created by one of two methods; the first
being slowing down the drive, and the second being the tape
method. The missing sector was created by writing to the
preceeding sector at a high RPM, thus causing the end of the
first sector to overwrite the header of the next.

Now, creating bad sectors is an easy and valuable function of
the CHIP. To create a missing sector, simply format the track
without that sector number. To create CRC bad sectors,
special operations must be performed by the CHIP While
writing the sector. These functions are all automatic and easy
using the ARCHIVER/EDITOR, however, a brief description of
each type will be given below.

6.11.1 CRC Error Sectors

The CRC bytes are a sophisticated checksum of the
preceeding data in a sector. If these bytes do not agree with
the data read from the sector, a CRC error will occur. This
type of bad sector is simply ecreated by stopping the write
process in midstream, thereby keeping the old CRC yet
allowing new data. The status CRC error bit (bit 3 of the
status) will refleect the error after a read. The CHIP also
carries this process a step further. You can specify the
number of bytes actually written when ecreating a bad sector
by putting the number of bytes to be written in the last byte
of the sector data. After the last byte is written, the process
stops, and on subsequent reads of that sector, the status will
reflect a CRC error (on the B- mode only).

6.11.2 Data Type Flags

Another way to create perfectly good sectors with a bad
status is by setting data type flags in the write (FDC write)
command. When this is done, the data AM mark bits 0 and 1
are changed to reflect the type of data. Although these
sectors are perfectly good, the CHIP (and the ROM C) will
take these sectors as being bad and return an error. Bits 5 and
6 of the status will reflect the results of the read of these
types of sectors. With two bits, four ecombinations can be
made; only one of which is a perfectly good sector.

In all there are nine types of sectors: Only one of which is
good. The missing sector is another type and the remaining

seven are created by combinations of the data type flags and
the CRC error bit.

6-10

6.12 STATUS

The bits referred to as being status bits 3-6 are not
automatically had after reading a sector. The meaning of the
SIO status is as follows:

$90 : A bad sector of ANY type was encountered upon
' the read.

$8A : Timeout. The sector was missing and the drive did
not respond in time.

$8B : Device NAK. related to above. If the drive doesn't
| respond in time, the SIO tries again, however.

$38C : Serial bus. Related to above.

$01 : A good read/write

The $90 should usually be returned on bad sectors, however,
the timeout value of the disk interface routine is borderline
thus causing the errors $8A-$8C. A $90 can be insured by
setting the timeout value higher and using the SIO instead.

The status bits of the FDC are received by executing an S
(status) command after reading the sector in question. The
S command will return 4 bytes of which only two are really
meaningful and only the second is deseribed here. For
reference to the others, see chapter 5 (Diskette Handler
Commands) of the Atari OS manual. After a read, the
hardware status bits are reflected as in figure 6-2.

6-11

BIT READ WRITE NOTES

7 |Not ready Not ready always CLR

6 |Data type Write protect

5 |Data type (a) Write fault

4 |Record not found Record not found (sector missing)
3 |CRC error CRC error

2 |Lost data Lost data shouldn't happen
1 DRQ DRQ always CLR

0 |[BUSY BUSY always CLR

(a) : can be reliably used.

NOTE: All bits are returned in low-true form (i.e., a good sector

returns a $FF status).

Figure 6-2. Hardware Status Bits

6-12

CHAPTER 7
SPECIAL CHIP FEATURES

This chapter deals strictly with the CHIP itself and illustrates
several features of the CHIP which are not fully supported in
the ARCHIVER/EDITOR program.

7.1 THE BOOT SECTOR

When the 810 Disk Drive is turned on with the CHIP
Modification installed, the head will first align itself on track
0, and then will immediately return to track $27 and read
sector $2DO (if present). The CHIP checks the last two bytes
of the sector and compares them to $4A, $25 (or J% in ASCII).
If the last two bytes are a $4A and $25 then the program
control will be transferred to the sector data for execution.
On the ARCHIVER/EDITOR diskette, the boot sector will
store a $80 in $195 which will open the drive. It also stores a
$02 in $191 which will make the drive shut off one second
after it was last accessed. A return is then executed which
brings the CHIP's program back to its warm entry.

7.2 MOTOR OFF DELAY

There are two ways to change the motor turn off delay when
using the CHIP. The first is to boot a boot sector when you
turn on the.drive. The other method is to use a built in
command which does this automatically. Appendix D is a

basie program which first opens the CHIP and then adjusts its
motor shutdown delay time.

i

7.3 LOCKING FORMAT/WRITE/OPEN

The CHIP contains a variable within its memory which allows
the opening of the CHIP and of various write type comands.
This feature will probably NEVER NEED TO BE USED!
However, just in case, location $19D contains the needed
information that will TOTALLY lock the CHIP from outside
mischief. The modifying of $19D would normally be done in
the boot sector, which you would need to write.

7.4 MACHINE LANGUAGE INTERFACE

The CHIP can allow user programs to be transferred to and
executed within the data buffer inside of the 810 Disk Drive.
This allows for even more flexibility to deal with unforeseen
situations, thus the CHIP truly is expandable. For more
information on the inner workings of the CHIP, please contact
Spartan Software of MN Inc.

7.5 TRACING

The CHIP also supports two types of tracing. One of which
keeps track of how many times a particular track is accessed.
The other type keeps a listing of the sector numbers read,
given some starting sector. These features will be supported
by an ARCHIVER 2.0 when released.

CHAPTER 8
USEFUL HINTS

This chapter will deal with tracks and useful things you may do
using your ARCHIVER/EDITOR program. This chapter is
specifically designed to help the user backup a program that
wouldn't work when the defaults were used.

8.1 CYCLIC FORMATS

Consider the following formula:

-
CR—Y
w o
S o
=
oo
~ o
00 ©
0w o
-
D O
w o
NN
oo
oo
o
o o
0 o

If you write out data using this format you may find that you
get a verify error, why? The answer is really quite straight
forward. Since all the sectors are doubles, the logic seeking
commands will be used, but now how does the logic seeking
command locate the sector? It can't because it has no way of
distinguishing the first half from the second. The solution to
this problem is to turn the logic seeking commands OFF (L-)
and the compaction OFF (C-). Also, you should turn the
verify off (V-). This will cause each sector to be read in
correctly because two sectors will be fetched per revolution
an-1 the sectors will automatically be written correctly.

8.2 20 OR MORE SECTORS

The ARCHIVER can only handle reading and writing a
maximum of 19 sectors, however, the EDITOR can handle 24.
If a diskette does contain more than 20 sectors, the custom
formatter must be used and some sectors must be shortened.
Notice that 20 full sectors can be written if you set all gaps
(except the POST ID CRC) to one (1). However, if more than
20 sectors are being used, you must do some intelligent
guessing on which sectors are shortened and go from there.
Once you made the format, writing the sectors is easy. The
sector sequences must matech and the formatting flag should
be turned OFF. Also the bad sector flag must be turned to a

B- and CRC error bad sector symbols must be created under
the sector number (the B command, in the EDITOR of
course). Next the sector data must be modified so that the
last byte in the bad sectors is the actual number of bytes to be
written to the sector. Finally, you write the track and hope it
works, otherwise try again. At the time of this writing, NO
software company had ever used 20 or more sectors in a
format (nor did they have the ability to).

8.3 GARBAGE TRACKS

Ocecasionally, you may run into tracks that return a read
format error. (This has only happened once to my knowledge.)
This is because the tracks' are badly garbled and the second
pass does not return the same results as the first pass. This
will only happen on unformatted tracks, in whieh case random
numbers appear as the sector numbers. To solve this problem,
simply switch to a A6- read format mode.

8.4 GETTING RID OF LOUD SECTORS

Many software compames insist on checking missing sectors,
thus the loud noises as the program boots. Because most
software companies do not check the status after such a read,
you may replace their format with a new one that contains the
required sectors and the ones that made the noise. When the
new format has been created, you must insert bad sectors.
The easiest way to do this is to position over the new sector
and press the B (first you must get data into that sector).
When you have selected all sectors that need to be bad, then
write the sectors out, and usually the program will work.

CHAPTER 9
IF ALL ELSE FAILS

If you have tried everything in order to copy a diskette and
have had no success, please contact us. If you need new
techniques for backup of a program it is likely that we have
already run into it and can offer a solution. As of the time of
this publication, EVERYTHING can be backed up with just the
ARCHIVER. However, because the EDITOR is so powerful, we
expect that it will be used to create new protections, thus this
process can always be duplicated. If you do have problems we
will answer and provide you with the solutions, assuming of
course that you are the original purchaser of the CHIP and are

creating a personal backup of your own original piece of
software.

Most older disk drive read/write problems can be eliminated if
a Data Separator Board is installed. All newer 810 Disk Drives
have this board. But, many older model drives may not have
the Data Separator Board. If your drive does not have this
board we strongly recommend you purchase one (about 35-40%)
from your local Atari retailer or from:

Percom Data Company, Inc.
Service Department

11220 Page Mill Road
Dallas, TX 75243

9-1

cMmp P TIEALLIY ~m AEIGED SV W LVLLELS BLBT Nl VP BT TV Il HBIT BT B OB

Decimal Hex Decimal Hex Decimal Hex Decimal Hex

0 0 68 44 136 88 204 Cce
1 1 69 45 137 89 205 CD
2 2 70 46 138 8A 206 CE
g 3 71 47 139 8B 207 CF
4 4 72 48 140 8C 208 DO
5 5 73 49 141 8D 209 Dl
6 6 74 4A 142 8E 210 D2
7 7 75 4B 143 8F 211 D3
8 8 76 4C 144 90 212 D4
9 9 71 4D 145 9] 213 DS
10 A 78 4E 146 92 214 D6
11 B 79 4F 147 93 215 D7
12 G 80 50 148 94 216 D8
13 D 81 51 149 95 217 D9
14 E 82 52 150 96 218 DA
15 F 83 53 151 97 219 DB
16 10 84 54 152 98 220 DC
18 12 86 56 154 9A 227 DE
19 13 87 57 155 9B 223 DF
20 14 88 58 156 oC 224 EO
21 15 89 59 187 9D 225 El
22 16 90 SA 158 9E 226 E2
23 17 9l 5B 159 9F 297 E3
24 18 92 5C - 160 A0 228 E4
5 19 93 5D 161 Al 229 E5
26 1A 94 SE 162 A2 230 E6
27 1B 95 SF 163 A3 231 E7
28 1C 96 60 164 A4 232 E8
29 1D 97 61 165 AS 233 E9
30 1E 98 62 166 A6 234 EA
31 IF 99 63 167 A7 235 EB
32 20 100 64 168 A8 236 EC
23 2] 101 65 169 A9 237 ED
34 2 102 66 170 AA 238 EE
= e 103 67 171 AB 239 EF
= . 104 68 172 AC 240 FO
o = 105 69 173 AD 241 Fl
= = 106 6A 174 AE 242 F2
39 27 107 6B 175 AF 243 F3
40 28 108 6C 176 BO 244 F4
41 29 109 6D 177 Bl 245 F5
42 2A 110 6E 178 B2 246 F6
43 2B 111 6F 179 B3 247 F7
44 2C 112 70 180 B4 248 F8
45 2D 113 71 181 B5 249 F9
46 2E 114 12 182 B6 250 FA
47 9F 1135 73 183 B7 251 FB
48 30 116 74 184 B8 252 FC
49 31 117 75 185 B9 253 FD
50 32 118 76 186 BA 254 FE
51 33 119 17 187 BB 255 FF
52 34 120 78 188 BC
53 35 121 79 189 BD
54 36 122 7A 190 BE
55 37 123 7B 191 BF
56 38 124 7C 192 Co
57 39 125 7D 193 e
58 3A 126 7E 194 C2
59 3B 127 1F 195 a3
60 3C 128 80 196 C4
61 3D 129 81 197 C5
62 3E 130 82 198 C6
63 3F 131 83 199 C7
64 40 132 84 200 c8
65 41 133 85 201 C9
66 42 134 86 202 CA
67 43 135 87 203 CB

Appendix B ARCHIVER Command Summary

(3 -

s Copy
START : start reading/writing
OPTION : halt
E &= Enter EDITOR
N — Number of copies
Xy : entry (HEX)
0o — Open the CHIP
wxyz,d : wxyz is the code, d is the drive
P == Parameters
« : cursor left
> : cursor right
RET : select parameter
ESC : anytime will abort

Appendix C EDITOR Command Summary

T .~
B o=
4
¢
«
>
DEL
INS
CLR
H
RET
- -
+
«
>
DEL
INS
CLR
w
H e
I ==

ARCHIVER
Bad sector select

Disassemble

: scroll up
¢ scroll down

Enter edit mode

: cursor up one line

: cursor down one line
: cursor left

¢ cursor right

: delete byte cursor on
: insert at cursor

: fill

¢ home cursor

: beginning of line

Formatter

: eursor up

¢ cursor down

: cursor right

: cursor left

¢ delete sector

¢ insert sector

: delete all sectors
¢ write format

Hold sector

Insert format

Appendix C EDITOR Command Summary (Continued)

L = Address change
M -~ Enter mapper
Xy ¢ track number
N Renumber current track
Xy ¢ new number
0 = Open CHIP
wxyz, d : CHIP code=wxyz, drive = d
P ~- Parameter
« ¢ cursor right
> : cursor left
RET : select parameter
R Read tracks

OPTION : halt
START . : begin/continue

- Write tracks
OPTION : halt

START : begin/continue

CLR — Delete track
DEL — Delete sector
INS e Insert sector

ESC : return to command mode

Appendix D CHANGING DRIVE MOTOR SHUTDOWN DELAY

10 DIM A$¢4)

20 7 "WHAT DRIVE DO YOU WANT TO OPEN';

30 INPUT DRIVE:IF DRIVEC OR DRIVE)4 THEN 20

40 ? "WHAT 1S THAT DRIVE‘S CHIP 1D CODE";

50 INPUT A$:1F LEN(AS)(4 THEN ? "PLEASE USE 4 DIGITS.®:60T0 40
40 C=0:FOR A=1 TO 4:B=ASC{A$(A,A))-48:B=B-((B)9)47) :(=C¥144B:NEXT A
70 POKE 748,49

80 POKE 749,DRIVE

90 POKE 770,79

100 POKE 771,0

110 POKE 774,15

120 CHI=INT(C/256) :CLO=C-CHI¥25¢

130 POKE 778,CLO:POKE 779,CHI

140 RESTORE :FOR A=1 TO 4:READ B:A$(A,A)=CHR$(B) :NEXT A

150 X=USR{ADR(A$))

160 IF PEEK(771){)1 THEN ? "ERROR, TRY AGAIN.":60T0 20

170 ? "THE CHIP WAS OPENED SUCCESSFULLY.®

230 POKE 770,78

240 POKE 771,0

260 2 :7 "HOW MANY UNITS OF 1/2 SECONDS DO YOU WANT TO SET THE DRIVE
SHUTDOWN T0°;

270 INPUT TIME:IF TIMEC! OR TIME)255 THEN 240

280 POKE 778,TIME

290 POKE 779,0

300 X=USR(ADR(AS))

310 IF PEEKC771)<)1 THEN ? *THE CHIP IS NOT OPEN FOR CHANGE.
PLEASE OPEN IT AND TRY ABAIN.® :RUN

320 ? :? "THE DRIVE WAS SUCCESSFULLY MODIFIED.®

330 DATA 104,76,89,228

APPENDIX E: ERROR MESSAGES

FORMAT ERROR

READ FORMAT ERROR

READ/WRITE ERROR (STD)

READ/WRITE ERROR (POS)

TOO MANY SECTORS

After formatting a track,
the verify found the track
to be bad. Try again, and
if it persists, the diskette
is likely bad.

The CHIP was unsuccessful
at getting the sector
sequence from the disk-
ette. If you suspect more
than 21 sectors, use a
A4 mode., otherwise use
a Ax- mode.

sector could not be read
(or written). This is a
standard read/write com-
mand and should never
happen, unless you have an
unreliable drive.

A logic seeking read/write
command (sector) failed.
Could be a format mis-
matech problem or an error
as in above.

More than 25 sectors was
encountered on the read
format. Try piecing the
track together by using
A6- read mode repeat-
edly.

APPENDIX E: ERROR MESSAGES (Continued)

INPUT ERROR

VERIFY ERROR

OPENING ERROR

MEMORY FULL

Invalid entry, try again, or
consult appropriate sec-
tions regarding the partic-
ular funetion you tried.

The verify pass failed to
yield the same results as
the data written. Retry
the write process.

You entered the wrong
code or drive of your CHIP
when using the O com-
mand. Retry the open.

No more room to store the
data on reads, inserts, ete.
Write some of what you
have back out to the disk
and delete what is not
needed.

et

